Molecular homology and the luminal transport of Hg2+ in the renal proximal tubule.
نویسندگان
چکیده
The aim of this study was to define mechanisms involved in the luminal uptake of inorganic mercury in the kidney using isolated perfused straight (S2) segments of the proximal tubule. When mercuric conjugates of glutathione (GSH), cysteinylglycine. or cysteine (containing 203Hg2+) were perfused through the lumen, the rates of luminal disappearance flux (JD) of inorganic mercury were approximately 39, 53, and 102 fmol/min per' min, respectively. Thus, the rates of luminal uptake of mercury are greater when the mercury is in the form of a mercuric conjugate of cysteine than in the form of a mercuric conjugate of cysteinylglycine or GSH. Addition of acivicin to the perfusate, to inhibit activity of the y-glutamyltransferase, caused significant reductions in the J,, for mercury in tubules perfused with mercuric conjugates of GSH. Addition of cilastatin, an inhibitor of dehydropeptidase- l (cysteinylglycinase) activity, caused significant reductions in the uptake of mercury in tubules perfused with mercuric conjugates of cysteinylglycine. These findings indicate that a significant amount of the luminal uptake of mercury, when mercuric conjugates of GSH are present in the lumen, is dependent on the activity of both y-glutamyltransferase and cysteinylglycinase. Finally, the JD for mercury in tubules perfused with mercuric conjugates of cysteine was reduced by approximately 50% when 3.0 mM L-lysine or 5.0 mM cycloleucine was added to the perfusate. It is concluded that these findings indicate that at least some of the luminal uptake of mercuric conjugates of cysteine occurs at the site of one or more amino acid transporters via a mechanism involving molecular homology.
منابع مشابه
Amino acid transporters involved in luminal transport of mercuric conjugates of cysteine in rabbit proximal tubule.
The primary aim of the present study was to test the hypothesis that amino acid transport systems are involved in absorptive transport of dicysteinylmercury (cysteine-Hg-cysteine). Luminal disappearance flux [JD, fmol x min(-1) (mm tubular length)(-1)] of inorganic mercury (Hg2+), in the form of dicysteinylmercury, was measured in isolated perfused S2 segments with various amino acids or amino ...
متن کاملRenal nerve stimulation augments effect of intraluminal angiotensin II on proximal tubule transport.
The proximal tubule synthesizes and secretes angiotensin II into the lumen, where it regulates transport. Renal denervation abolishes the effect of angiotensin II on proximal tubule transport. Using in vivo microperfusion, we examined whether renal nerve stimulation modulates the effect of angiotensin II on transport. The effect of angiotensin II was assessed by measuring the decrease in volume...
متن کاملThe renal nerve is required for regulation of proximal tubule transport by intraluminally produced ANG II.
The proximal tubule synthesizes and luminally secretes high levels of angiotensin II, which modulate proximal tubule transport independently of systemic angiotensin II. The purpose of this in vivo microperfusion study is to examine whether the renal nerves modulate the effect of intraluminal angiotensin II on proximal tubule transport. The decrement in volume reabsorption after addition of 10(-...
متن کاملBinding of mercury in renal brush-border and basolateral membrane-vesicles.
The influence of the thiols L-cysteine (CYS), glutathione (GSH), and 2,3-dimercapto-1-propanesulfonate (DMPS) on the binding and transport of inorganic mercury (Hg2+) in luminal (brush-border) and basolateral membrane-vesicles isolated from the kidneys of rats was studied using radiolabeled mercury (203HgCl2). Membrane-vesicles were exposed to 1, 10, or 100 microM Hg2+ in the presence or absenc...
متن کاملGlucose transport by proximal renal tubules.
TUNE, BRUCE M., AND MAURICE B. BURG. Glucose transport by proximal renal tubuler. Am. J. Physiol. 221(Z) : 580-585. 197 1 .-Glucose transport was studied in isolated, perfused rabbit proximal renal tubules. Glucose was actively transported out of the lumen of both the convoluted and straight portions. The rate of glucose transport was, however, much greater in the convoluted portion than in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 11 3 شماره
صفحات -
تاریخ انتشار 2000